neg_mining_info_nce_loss
NegativeMiningInfoNCECriterion
Bases: Module
The criterion corresponding to the SimCLR loss as defined in the paper https://arxiv.org/abs/2002.05709.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
temperature
|
float
|
The temperature to be applied on the logits. |
0.1
|
buffer_params
|
dict
|
A dictionary containing the following keys: - world_size (int): Total number of trainers in training. - embedding_dim (int): Output dimensions of the features projects. - effective_batch_size (int): Total batch size used (includes positives). |
required |
Source code in fmcib/ssl/losses/neg_mining_info_nce_loss.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
__init__(embedding_dim, batch_size, world_size, gather_distributed=False, temperature=0.1, balanced=True)
Initialize the NegativeMiningInfoNCECriterion class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding_dim
|
int
|
The dimension of the embedding space. |
required |
batch_size
|
int
|
The size of the input batch. |
required |
world_size
|
int
|
The number of distributed processes. |
required |
gather_distributed
|
bool
|
Whether to gather distributed data. |
False
|
temperature
|
float
|
The temperature used in the computation. |
0.1
|
balanced
|
bool
|
Whether to use balanced sampling. |
True
|
Attributes:
Name | Type | Description |
---|---|---|
embedding_dim |
int
|
The dimension of the embedding space. |
use_gpu |
bool
|
Whether to use GPU for computations. |
temperature |
float
|
The temperature used in the computation. |
num_pos |
int
|
The number of positive samples. |
num_neg |
int
|
The number of negative samples. |
criterion |
CrossEntropyLoss
|
The loss function. |
gather_distributed |
bool
|
Whether to gather distributed data. |
world_size |
int
|
The number of distributed processes. |
effective_batch_size |
int
|
The effective batch size, taking into account world size and number of positive samples. |
pos_mask |
None or Tensor
|
Mask for positive samples. |
neg_mask |
None or Tensor
|
Mask for negative samples. |
balanced |
bool
|
Whether to use balanced sampling. |
setup |
bool
|
Whether the setup has been done. |
Source code in fmcib/ssl/losses/neg_mining_info_nce_loss.py
__repr__()
Return a string representation of the object.
Returns:
Name | Type | Description |
---|---|---|
str |
A formatted string representation of the object. |
Examples:
The following example shows the string representation of the object:
{
'name':
Note
This function is intended to be used with the pprint module for pretty printing.
Source code in fmcib/ssl/losses/neg_mining_info_nce_loss.py
forward(out)
Calculate the loss. Operates on embeddings tensor.
Source code in fmcib/ssl/losses/neg_mining_info_nce_loss.py
gather_embeddings(embedding)
Do a gather over all embeddings, so we can compute the loss. Final shape is like: (batch_size * num_gpus) x embedding_dim
Source code in fmcib/ssl/losses/neg_mining_info_nce_loss.py
precompute_pos_neg_mask()
Precompute the positive and negative masks to speed up the loss calculation.